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Long-ranged correlations in sheared fluids
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The presence of long-ranged correlations in a fluid undergoing uniform shear flow is investigated. An exact
relation between the density autocorrelation function and the density-mometum correlation function implies
that the former must decay more rapidly than 1/r , in contrast to predictions of simple mode-coupling theory.
Analytic and numerical evaluation of a nonperturbative mode-coupling model confirms a crossover from 1/r
behavior at ‘‘small’’ r to a stronger asymptotic power-law decay. The characteristic length scale isl

'Al0 /a, wherel0 is the sound damping constant anda is the shear rate.
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I. INTRODUCTION

Long-range spatial correlations~algebraic decay! in
simple classical fluidsat equilibriumoccur only near a ther
modynamic critical point, i.e., for finely tuned values of th
thermodynamic parameters. On the other hand, such lo
range correlations appear generically for a wide class ofnon-
equilibrium states@1#. The predictions of this phenomeno
have been made in a number of contexts, including s
organized criticality@2#, linear response@3#, kinetic theory
@4#, and stochastic hydrodynamics@5#. The simplest and
most direct approach is that of linear response where
nonequilibrium correlation functions are expanded about
equilibrium state to first order in a nonequilibrium contr
parameter~typically a spatial gradient!. The algebraic decay
is then seen to result from spontaneous excitations of hy
dynamic modes induced by the coupling of the control
rameter to an associated flux. A more intuitive analysis
this effect follows from an extension of fluctuating hydrod
namics to nonequilibrium states. To linear order in the c
trol parameter the same algebraic decay is found, as
pected. Such theoretical studies for the dens
autocorrelation function in a fluid subject to a temperat
gradient have received detailed experimental confirmatio
recent years@6#. The shortest length scale is set by the int
molecular force range, while the experimental verification
on macroscopic system size scales. Since the decay is
braic there would appear to be no other length scale
volved. However, we argue here that there is an additio
macroscopic scale set by the parameters of the nonequ
rium state such that the true asymptotic decay is faster
that predicted by simple perturbative studies near equ
rium. The analysis here is limited to a single nonequilibriu
state, that of uniform shear flow, but the qualitative featu
are expected to extend to other nonequilibrium states as w

Uniform shear flow~USF! is characterized by a consta
average density and temperature, and an average vel
flow field given byvW (rW)5aJ•rW, where the shear rate tensor
traceless (aJ5ayx̂ in a Cartesian frame of reference!. This
nonequilibrium state has a single scalar control parameta
1063-651X/2002/66~4!/041206~8!/$20.00 66 0412
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and has been the subject of numerous theoretical inves
tions aimed at understanding transport and fluctuations
model nonequilibrium state@7–11#. All of these share in
common the assumption that at large length and time sca
the dynamics of fluctuations in a simple fluid are domina
by the contribution of the hydrodynamic modes that dec
much more slowly than do the neglected kinetic modes. T
result is that the decay of thermal fluctuations in the hyd
dynamic fields, i.e., the density, momentum, and ene
fields, is governed at large length and time scales by eq
tions formally identical to the phenomenological Navie
Stokes equations. Here, ‘‘large length and time scal
means scales large compared to the mean free path and
free time, which is the usual domain of validity of hydrod
namics. Correlations between the values of thermally ge
ated fluctuations in the fields at two different space-tim
points can be modeled by supplementing these equat
with random forces, which represent the interaction of t
restricted set of variables with the neglected degrees of f
dom to give a Langevin model. In equilibrium, the result
the Navier-Stokes-Langevin model is that the equal-time c
relation functions for two hydrodynamic fieldsx(rW,t) and
y(rW,t) are simply proportional to thed-functions in the spa-
tial arguments

Cxy~rW,rW8![^dx~rW,t !dy~rW8,t !&→Ad~rW2rW8!, ~1!

wheredx5x2^x&, and the amplitudeA is a corresponding
thermodynamic response function. This result simply co
firms that fluctuations at different points in space are unc
related when speaking of hydrodynamic length scales~i.e.,
neglecting correlations on the scale of the force range!. In
contrast, these correlation functions for the nonequilibriu
state have a new long-range component, which to first or
in the shear rate is of the form

Cxy~rW,rW8!→Ad~rW2rW8!1aB
1

urW2rW8u
. ~2!
©2002 The American Physical Society06-1
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The amplitudeB is again a thermodynamic response fun
tion. The physical difference between equilibrium and no
equilibrium is due to the way in which small hydrodynam
fluctuations decay. At equilibrium a fluctuation decays
cally due to viscous and thermal damping, whereas in sh
flow it is convected as well and spreads out over a len
scale that varies as the speed of convection times the
scale for viscous and thermal damping@7,8#.

With the exception of Ref.@10#, the form~2! was gener-
ally obtained using a perturbative treatment in Fourier rep
sentation assuming that the shear ratea ~with dimensions of
frequency! is smaller than all other hydrodynamic freque
ciesck andl0k2, wherec is a propagation velocity,l0 is a
transport coefficient, andk is the wave vector. For fixed
shear rate, this therefore sets an upper bound on the ran
separations in real space for which the results apply. In
context, the true asymptotic behavior of the correlation fu
tions remains unclear. The analysis of Ref.@10# has the po-
tential to resolve this question since it is nonperturbative
retains the two dominant effects of large shear rate: sec
effects'at associated with convection, and shear rates co
parable to the hydrodynamic dampinga'l0k2. The result-
ing correlation functions are found to have the form

Cxy~rW,rW8!→Ad~rW2rW8!1aB
1

urW2rW8u
F~~rW2rW8!/ l !. ~3!

The functionF(rW/ l ) depends on a new nonequilibrium co
relation lengthl 5Al0 /a . For r ! l the result~2! is recov-
ered. However, the asymptotic form forr @ l was not ex-
plored in any detail in Ref.@10#.

Here, we attempt to clarify the asymptotic behavior of t
static correlation functions in a sheared fluid in two wa
First, it is shown that the continuity equation and stationa
place exact constraints on the decay of the density auto
relation function such that it must be faster thanr 21 for large
r. This result is independent of any model for evaluating
correlation function. Next, we reconsiderF(rW/ l ) in Eq. ~3!
from the results of Ref.@10# and show that the actua
asymptotic behavior isr 211/3. The crossover between th
r 21 behavior at short length scales and the strongerr 211/3

decay at large separations is illustrated by numerical eva
tion of the general result.

II. EXACT BOUNDS ON THE RATE OF DECAY

ConsiderN atoms with positions and momenta denoted
qW i and pW i , respectively, and denoted collectively asG

5$qW i ,pW i% i 51
N . The atoms interact via a central two-body p

tential f(r ) and are confined to a volumeV such that the
average density isn. The potential is assumed to be repulsi
at short distances and to diverge asr→0 and to have a finite
force range. Uniform shear flow results from the applicat
of Lees-Edwards boundary conditions@12# consisting of pe-
riodic boundaries in all directions except that of the gradi
~here, they direction!. If a particle exits the volume in the
positivey direction ~say, aty5L/2) at timet, it is reentered
at the opposite side of the volume (y52L/2) with its veloc-
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ity in the direction of flow shifted asvx→vx2aL and posi-
tion shifted asx→x2aLt. Taken together, these constitu
periodic boundaries in the local rest frame. The tempera
will generally increase due to viscous heating, but we w
follow standard practice and assume the presence of a
mostat that counteracts the viscous heating so that the
perature is also constant in time leading to a steady s
@13#. The dynamics thus described possess several impo
symmetries that will be used below. First, they are invari
with respect to parity of the positions and momenta so t
the equations of motion and boundary conditions are

same if written in terms of the variablesqW̃ i

52qW i and pW̃ i52pW i . Second, they are invariant under mi
ror reflection about thez axis ~but not thex or y axes since
the boundary condition couples thex velocity and they co-
ordinate!. Third, since USF is a steady state, statistical pro
erties are invariant with respect to a change in the ori
from which time is measured~time translational invariance!.
Fourth, USF is translationally invariant in the local re
frame as well as in a mixed frame consisting of the labo
tory positions and the velocities measured relative to the fl
@10#.

The microscopic local density and momentum fields
defined, respectively, as

cn„rW;G~ t;G0!…5(
i 51

N

d„rW2qW i~ t !…,

cW p„rW;G~ t;G0!…5(
i 51

N

pW i8~ t !d„rW2qW i~ t !…, ~4!

wherepW i85pW i2mi aJ•qW i is the momentum defined relative t
the local flow field andG(t;G0) is the point in phase space
which the system would reach after evolving from the init
point G0 for a timet. Note that these fields are related by t
microscopic continuity equation

d

dt
cn„rW;G~ t;G0!…5(

i 51

N

pW i~ t !•
d

dqW ~ t !
d„rW2qW i~ t !…

52¹W •@cWp„rW;G~ t;G0!…

1aJ•rWcn„rW;G~ t;G0!…#. ~5!

The correlations functions are defined as

Cab~rW,rW8;t,t8!

[E dG0r~G0!dca„rW;G~ t;G0!…dcb„rW8;G~ t8;G0!…,

~6!

where subscriptsa andb label the specific field considered
r(G0) is the distribution of phase variables at initial timet
50, anddca5ca2^ca&. For a steady state the time depe
dence occurs throught2t8 due to time translational invari
ance. Because of the modified spatial translational inv
6-2
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LONG-RANGED CORRELATIONS IN SHEARED FLUIDS PHYSICAL REVIEW E66, 041206 ~2002!
ance, it is also possible to show that the correlation functi
depend only on the relative separation. Consequently,
correlation functions can be written as

Cab~rW,rW8;t,t8!5Cab~rW2rW8;t2t8!.

ChoosingrW850W and t85t, Eq. ~6! gives the relationship

d

dt
Cnn~rW !50

52¹W •„CWpn~rW !2CW np~rW !1aJ•rWCnn~rW !…, ~7!

where for notational simplicityCnn(rW)[Cnn(rW;0). This re-
sult has been derived previously in a different context@10#. It
simplifies further using the translational, parity, and refle
tion invariance noted above to give the final form of inter
here

052¹W •„2CWpn~rW !1aJ•rWCnn~rW !…. ~8!

This is an exact result that follows directly from stationar
and conservation of mass. Integrating~8! over a spherical
volume bounded by shells atr 501 and r 5R, and making
use of Gauss’ theorem gives the relationship ofCW pn(rW) to
Cnn(rW),

22E CW pn~Rr̂!• r̂ d r̂5E r̂ •aJ•rWCnn~Rr̂!dr̂. ~9!

The notationdr̂ indicates a surface integral over the un
sphere and use has been made of the fact that the correl
functions evaluated at the origin vanish since the poten
will not allow atoms to occupy the same spatial position@the
singular contribution toCnn}d(r ) is excluded from the in-
tegration volume#.

Equation~9! is the main result of this section. To put th
in context, consider an expansion ofCnn(rW) to first order in
the shear rate with the form

Cnn~rW !→Cnn
(0)~r !1 r̂ •aJ• r̂ Cnn

(1)~r !1o~a2!. ~10!

Inserting this into Eq.~9! gives

22E CW pn~Rr̂!• r̂ d r̂→ a2
4p

15
RCnn

(1)~R!1o~a3!, ~11!

showing that if the density-momentum correlation functi
decays for large separations, as it must, then the first-o
correction to the density-density correlation function m
decay faster than 1/R. This result is independent of the d
mensionality of the system. Furthermore, multiplying Eq.~9!
by RD21 and integrating gives, inD dimensions,

E CW pn~rW !• r̂ dDr 5E
V

r̂ •aJ• r̂ rCnn~rW !dDr

5a2
4p

15E0

`

r DCnn
(1)~r !dr1o~a3!. ~12!
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The quantity on the left is

E CW pn~rW !• r̂ dDr 5K (
i , j

pW i j8 •q̂i j L , ~13!

which vanishes in equilibrium but can be finite for USF d
to velocity correlations. This in turn implies that the firs
order correction to the shear rate decays faster than 1/r D11.

These results can be given a somewhat more genera
terpretation. Any function of a vector can be expanded
terms of the spherical harmonics in order to separate
dependence of the function on the direction and magnit
of its argument. The density-density correlation function b
comes

Cnn~rW !5 (
L50

`

(
M52L

L

Cnn
LM~r !YLM~ r̂ !, ~14!

with

Cnn
LM~r !5E dr̂YLM* ~ r̂ !Cnn~rW !. ~15!

Because of the parity symmetry of USF, it is easy to sh
that only coefficients with even values ofL are nonzero,
while the inversion symmetry about thez axis implies that
only even values ofM contribute. Then, noting that

r̂ xr̂ y52 iA2p

15
„Y22~ r̂ !2Y22* ~ r̂ !…, ~16!

Eq. ~9! becomes

E CW pn~Rr̂!• r̂ d r̂522aA2p

15
R ImCnn

22~r !. ~17!

The conclusions drawn about the first-order correct
Cnn

(1)(r ) are seen to be exact statements also about ImCnn
22(r ),

valid to all orders in the shear rate: namely, that ImCnn
22(r )

must decay faster than 1/r in any number of dimensions an
faster than 1/r D11 in D dimensions if the spatial integral o
the radial part of the density-momentum correlation funct
is finite. This corresponds precisely to the quantity for whi
the first-order results~2! predicted a 1/r decay. Conse-
quently, that result cannot be correct for sufficiently larger.

III. APPROXIMATE EVALUATION OF Cnn„r¢…

The algebraic decays of both static and dynamic corre
tion functions observed in simple fluids can be derived
means of fluctuating hydrodynamics. In this model, the ex
conservation laws for the local density, momentum, and
ergy density fields, (r,pW andu), respectively,

]

]t
r1¹W •pW 50,

]

]t
pW 1¹W •PJ50,
6-3
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]

]t
u1¹W •qW 50, ~18!

are approximated by taking the pressure tensorPJ and heat
flux vector qW to be a sum of two terms: the usual Navie
Stokes functionals of the local fields, and a random com
nent that isd-function correlated in space and time. Th
amplitudes of these correlations are related to the form
the deterministic parts of the fluxes@14#. Rewriting these in
terms of deviations from the macroscopic state then give
description of fluctuations about this state. The details
USF have been discussed in detail elsewhere@10# and only
the results are quoted for the purposes here. Defining
Fourier transform of the density-density correlation functi
as

C̃nn~kW !5E drW exp~ ikW•rW !Cnn~rW !, ~19!

the result obtained for it is

C̃nn~kW ;a!5kBT0r0
2xT„11g21D̃nn~kW l !…, ~20!

D̃nn~kW !5E
0

`

ds
kkxky~2s!

k3~2s!
expS 2E

0

s

ds8k2~2s8! D .

~21!

Here xT is the isothermal compressibility,g5cp /cV is the
ratio of specific heats at constant pressure and volume,
kW (t)5(kx ,ky2tkx ,kz). The characteristic length scale
th
is

04120
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l 5Al0 /a, wherel0 is the equilibrium sound-damping con
stant. The first term in Eq.~20! is the equilibrium contribu-
tion which, in the small wave vector approximation us
here, is a constant. The second term represents the non
librium correction which is derived assuming that the sh
rate and rate of dissipation are significantly less than
sound frequencya,l0k2!c0k, where c0 is the speed of
sound. However, no restriction on the value ofa/l0k2 is
imposed. The inverse transform of Eq.~20! is the real space
result quoted in Eq.~3! above.

In order to evaluate the behavior in real space, it is use
to introduce the expansion ofC̃nn(kW ) in spherical harmonics

C̃nn~kW !5 (
L50

`

(
M52L

L

C̄nn
LM~k!YLM~ k̂!, ~22!

and to recall the relation between the coefficients~15! to
those in Eq.~22!,

Cnn
LM~r !5

1

2p2i LE0

`

k2dk jL~kr !C̄nn
LM~k!. ~23!

This gives directly

Cnn
LM~r !5~kBT0r0

2xT!A4p l 23d~rW/ l !dL0dM0

1~kBT0r0
2xTg21!

1

2p2i L
l 23Dnn

LM~r / l !, ~24!

with
Dnn
LM~r5r / l !5E dkW j L~kr!YLM* ~ k̂!E

0

`

ds
kkxky~2s!

k83~2s!
expS 2E

0

s

ds8k2~2s8! D 5S 1

r D E dkW j L~k!YLM* ~ k̂!

3E
0

`

ds
kkxky~2sr2!

k3~2sr2!
expS 2E

0

s

ds8k2~2s8r2! D . ~25!
nge

lar,
The small shear rate limit~2! is obtained by noting thatl 2 is
inversely proportional to the shear rate and expanding
leading order ina,

l 23Dnn
LM~r / l !

→ l 23S l

r D F2E dkW j L~k!YLM* ~ k̂!
kxky

k4 G
→ a

l0r F idL2~dM22dM22!
p

4
A2p

15G . ~26!

The context here shows that this result applys only in
limit r / l→0, which is to say that, for fixed shear rate, this
to

e

a small r result and does not represent the true long-ra
behavior of the correlation function.

The actual asymptotic behavior for larger5r / l is ob-
tained in the Appendix where it is found that

Dnn
00~r!→S 2

9D 2/3

5pGS 5

6D r211/31O~r213/3!'6.5r211/3.

~27!

All other components decay even more rapidly. In particu
the true asymptotic behavior of ImDnn

22(x) is found to be

ImDnn
22~r!→ 935

756
61/6A5pGS 5

6D r217/31O~r219/3!

'13.2r217/3. ~28!
6-4
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This is consistent with the exact result~17! that this compo-
nent must decay more slowly thanr 24 in three dimensions.

In order to probe the asymptotic behavior in more det
we have performed a numerical evaluation of Eq.~25! by
wa
al
F

as
e

c

r

n
-

ic
ly
vi

e
ha
an

n

04120
l,

means of multidimensional Monte Carlo integration usi
the VEGAS algorithm @15–17#. Rather than directly evaluat
ing Eq.~25!, it was found to be more efficient to separate o
the short-ranged 1/r behavior by rewriting this as
Dnn
LM~r!52 id2l~dm22dm22!A2p

15

p

4r
1E dkW j L~kr!YLM* ~ k̂!3E

0

`

dsS kkxky~2s!

k3~2s!
2

k2~2s!kxky

k4 D
3expS 2E

0

s

ds8k2~2s8! D . ~29!
he
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ula-
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The number of samples used in performing the integrals
adjusted so that the internal estimate of the error in the ev
ations was always less than 5% of the calculated values.
smallr, the errors were substantially less while the limit w
occasionally reached asr was increased. Figure 1 shows th
spherically averaged valueDnn

00(r) as a function ofr to-
gether with the asymptotic power law of211/3, and the two
are seen to be consistent. Figure 2 shows the numerical
culation Dnn

22(r) in comparison with the small- and large-r
limits, @Eqs. ~26! and ~28!#, respectively. Again, crossove
between the limiting forms is clearly identified.

IV. DISCUSSION

The prediction of 1/r decays in the density autocorrelatio
function in shear flow is in violation of an exact bound com
ing from elementary considerations of statistical mechan
and the properties of the USF steady state. Detailed ana
of a less restrictive solution of the Navier-Stokes-Lange
model confirms that the 1/r behavior is actually valid only
for r ,Al0 /a and that this crosses over to a stronger pow
law decay at large distances. It turns out for this model t
the density-energy correlation function as well as energy

FIG. 1. ln(Dnn
00) as a function of ln(r/l) as determined by the

numerical calculation~circles! and the asymptotic result given i
Eq. ~27! ~line!.
s
u-
or

al-

s
sis
n

r-
t
d

longitudinal-velocity autocorrelation functions share t
same spatial dependence given by Eq.~26!. Therefore the
calculations given here apply to them as well. Interesting
the most long-ranged correlation function, based on calc
tions analogous to that illustrated in the Appendix, is for o
of the transverse-velocity autocorrelations which, in the n
tation of Ref.@10#, has the form

C44~rW !5kBT0@11D44~rW/ l 8!# ~30!

with l 85A2n0 /a, wheren0 is the shear viscosity and

D44
00~r!→ 1

5
62/3pGS 5

6D r25/31O~r27/3!. ~31!

To put these results in perspective, we can calculate
crossover length scale for several relevant systems using
Enskog~hard-sphere! model for the transport coefficients. I
this case, for all densities and choices of transport coe
cients, one has thatl0t/ l m f p

2 ;O(1), wherel m f p is the mean
free path andt is the mean free time, givingl; l m f p /Aat.
For water at standard temperature and pressure, the m
free time is of the order of 10212s and the mean free path
on the order of 1027 cm so thatl;1021 cm/Aa, where the

FIG. 2. ln(ImDnn
22) as a function of ln(r/l) as determined by the

numerical calculation~circles! and the asymptotic results given i
Eq. ~28! ~full line! and Eq.~26! ~dotted line!.
6-5
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shear rate is expressed in Hz. The crossover length is th
fore macroscopic for shear rates that are experimentally
sible~say, shear rates less than 1 KHz!. On the other hand, in
colloidal suspensions, typical parameters are@18# t;1022s
and l m f p;1025 cm giving l;1024 cm/Aa or within an or-
der of magitude of the mean free path. In computer simu
tions, the accessible values of the shear rate typically ar
the range 0.01,at,10, so that the relevant length scale
again 0.1, l / l m f p,10. Since the Navier-Stokes model
only valid for spatial scales much larger than the mean f
path, this means that the short-ranged 1/r behavior would be
relevant for water, but only the weaker asymptotic behav
is relevant for the other two systems.

The analysis here has implicitly assumed stability of
USF state. In fact, USF is unstable to sufficiently long wa
length perturbations@11,19#. The critical wavelength for sta
bility scales approximately asvT /a for small a, wherevT is
the thermal velocity. Therefore in order to see the crosso
phenomenon discussed here, there must be conditions
that l !vT /a. This requiresal0 /vT

2!1, which can be ac-
complished by small shear rates and high temperatures.
predicted behavior should be accessible via molecular
namics simulation for a sufficiently large system.

The qualitative feature of a nonequilibrium length sca
should be more general than the special case of USF,
applicable to other nonequilibrium states as well. For
ample, a steady state with uniform temperature gradient
04120
re-
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a characteristic frequencyvT¹ ln T. Setting this equal to a
hydrodynamic damping gives the length scalel
5Al0 /(vT¹ ln T). It is expected that the asymptotic deca
for r @ l will be different from that of perturbative mode
coupling theory currently in the literature for reasons simi
to those given here for USF.
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APPENDIX ASYMPTOTIC BEHAVIOR OF THE
CORRELATION FUNCTIONS

We begin by writing

D̃nn~kW !5E
0

`

dt
k̂xk̂y1t k̂x

2

~112k̂xk̂yt1 k̂x
2t2!3/2

exp@2k2b~ t !#,

~A1!

whereb(t)5t1 k̂xk̂yt
21 1

3 k̂x
2t3 is independent of the magni

tude of the wave vector. The coefficients of the expansion
spherical harmonics in real space are then
Dnn
LM~r!5E dk̂YLM* ~ k̂!E

0

`

dkk2 j L~kr!E
0

`

dt
k̂xk̂y1t k̂x

2

~112k̂xk̂yt1 k̂x
2t2!3/2

exp@2k2b~ t !#5Ap

GS L13

2 D
2L12GS 2L13

2 D r23E dk̂YLM* ~ k̂!

3E
0

`

dt
k̂xk̂y1t k̂x

2

~112k̂xk̂yt1 k̂x
2t2!3/2S r2

b~ t ! D
L13/2

M S L13

2
,
2L13

2
,2

r2

4b~ t ! D , ~A2!

whereM (a,b,z) is the confluent hypergeometric function. Now, changing variables tot5r2/3( k̂x
2)21/3y21 gives

Dnn
LM~r!5Ap

GS L13

2 D
2L12GS 2L13

2 D r 211/3E dk̂YLM* ~ k̂!~ k̂x
2!21/6E

0

`

dy
11 k̂xk̂y~ k̂x

2!22/3yr22/3

„112k̂xk̂y~ k̂x
2!22/3yr22/31~ k̂x

2!21/3y2r24/3
…

3/2

3S y3

g~y! D
L13/2

M S L13

2
,
2L13

2
,2

y3

4g~y! D , ~A3!

with

g~y!5
1

3
1 k̂xk̂y~ k̂x

2!22/3yr22/31~ k̂x
2!21/3y2r24/3. ~A4!

For the 00 component, we useM (a,a,z)5exp(z) to get

Dab
00~r!5

1

23
r211/3E dk̂~ k̂x

2!21/6E
0

`

dy~3y3!3/2expS 2
3y3

4 D1O~r213/3!522/3324/35pGS 5

6D r211/31O~r213/3!. ~A5!
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For the 22 component, it is more convienient to go back to the beginning and to integrate by parts

Dnn
LM~r!5E dk̂YLM* ~ k̂!E

0

`

k2dk jL~kr!E
0

`

dtF2
d

dt
~112k̂xk̂yt1 k̂x

2t2!21/2Gexp@2k2b~ t !#

5r23E dk̂YLM* ~ k̂!E
0

`

k2dk jL~k!2Ap

GS L15

2 D
2L12GS L1

3

2D r25E dk̂YLM* ~ k̂!E
0

`

dt~112k̂xk̂yt1 k̂x
2t2!1/2

3S r2

b~ t ! D
(1/2)L1(5/2)

M S L15

2
,
2L13

2
,2

r2

4b~ t ! D . ~A6!

The first term vanishes forL.1 so

ImDnn
22~r!52Ap

1

24
r25E dk̂ImY22* ~ k̂!E

0

`

dt~112k̂xk̂yt1 k̂x
2t2!1/2S r2

b~ t ! D
7/2

expS 2
r2

4b~ t ! D , ~A7!

and making the same change of variables as above gives

ImDnn
22~r!52Ap

1

24
r211/3E dk̂ImY22* ~ k̂!~ k̂x

2!21/6E
0

`

y23dy„112k̂xk̂yr
22/3~ k̂x

2!22/3y1r24/3~ k̂x
2!21/3y2

…

1/2

3S y3

g~y! D
7/2

expS 2
y3

4g~y! D . ~A8!

Now, only the odd terms ink̂xk̂y give nonvanishing contributions so we expand as

~112k̂xk̂yr
22/3~ k̂x

2!22/3y1r24/3~ k̂x
2!21/3y2!1/2S y3

g~y! D
7/2

expS 2
y3

4g~y! D
5

27

4
A3k̂xk̂y~ k̂x

2!22/3~9y3238!y23/2expS 2
3

4
y3D r22/31

27

128
A3y27/2k̂xk̂y~ k̂x

2!22

3expS 2
3

4
y3D r22@8~ k̂x

2!~2918y3181y612008!1~ k̂xk̂y!2~28 044y325022y61243y9240 088!#1O~r 28/3!1even.

~A9!

The y integral of the first term vanishes and the next term gives

ImDnn
22~r!5

935

729
32/3Ap22/3GS 5

6D r217/3E dk̂ImYlm* ~ k̂!~ k̂x
2!21/6k̂xk̂y~ k̂x

2!22
„3~ k̂x

2!22~ k̂xk̂y!2
…

5
935

756
32/3A3022/3pGS 5

6D r217/3. ~A10!
ev

ev
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